流体解析ソフトウェア Particleworks
  • Home
  • Home
  • Case Examples
    • Particleworks解析事例
    • Particleworks Case Examples
    • User Interview
    • World-Wide User Case Studies
  • Features
    • What is MPS?
    • Simulation Flow
    • Pre- and Post-Processing
    • Physics
    • Multiphysics Solution
    • GPU High Performance Computing
    • Operation environment
  • Particleworks for Ansys
  • News
  • Seminar, Event
  • Technical
    • 粒子法・MPS法
    • 技術コラム >
      • DX時代の製品開発プロセスとCAEの重要性 >
        • 第1回 序 略歴とコラム紹介
        • 第2回 DXとデジタルエンジニアリング
        • 第3回 製品開発プロセスの目指す姿
        • 第4回 DX時代のCAE
        • 第5回 評価CAEの概要と課題
        • 第6回 評価CAEの課題解決手法
        • 第7回 企画CAEの概要と課題
        • 第8回 企画CAEの運用と応用
        • 第9回 設計CAEの概要と課題
        • 第10回 設計CAEの課題解決の進め方
        • 第11回 開発プロセス運用の仕組み作り
        • 第12回 まとめと変革の時代に求められるエンジニア像
      • 粒子法のいま、そして未来へ >
        • 第1回 粒子法のいま
        • 第2回 SPH法におけるカーネル近似とカーネル関数の条件
        • 第3回 SPH法における空間離散化
      • 粒子法の非圧縮条件とは
      • 粒子法入門 >
        • 第1回 粒子法って何?
        • 第2回 粒子法は、他の方法とどう違うか
        • 第3回 粒子法の大きさと質量について
        • ​第4回 「粒子の動かし方」と「加速度の求め方」について
        • ​第5回 計算時間を短縮する方法について
    • Technical Column >
      • Growing the particle method, and its present state >
        • 1. Present State of the Particle Method
        • 2. Kernel Approximation and Kernel Function Conditions in the SPH Method (Preparation for Spatial Discretization)
      • Incompressibility of the particle method
      • Introduction to the particle method >
        • 1. What is a particle method?
        • 2. In what ways is the particle method different from other methods?
        • 3. Mass and volume of particles
        • 4. How to move particles and how to calculate accelerations of particles
        • 5. How to shorten the simulation time
    • 粒子法用語集
    • Particle Method Glossary
    • 参考文献・ウェブサイト
    • Reference Book/URL
    • 論文・講演
  • Contact
    • 導入の流れとライセンス形態
    • Particleworks / GranuleworksプリインストールGPU搭載ワークステーション
    • 開発元・パートナー
    • Developers, Partners
    • お問い合わせ
    • Contact Us

1. Present State of the Particle Method

1 Present State of the Particle Method

The particle method is one of simulation methods for solving partial differential equations with spatial discretization. The finite difference method and the finite element method are well known as a spatial discretization method. However, these methods require points and mesh that defines connectivity of points. For example, when solving the solid large deformation from Fig. 1(a) to (b) using the finite element method, the mesh will be distorted and loose accuracy. By contrast, in the particle method, as shown in Fig. 2, it is possible to perform calculations using only information on points. The most important feature of the particle method is that the particles set up virtually in the target body can move freely along with the motion of materials, and therefore each particle can move freely. The particle method is a relatively new computational method that is still growing and developing with improvements. Here we report on present state of the particle method.

Picture
Fig. 1 Images of finite element method and finite difference method

1.1  Historical Development of Particle Method

As explained in the introduction, the finite difference method and the finite element method use both points and meshes. These mesh-based methods, especially in free surface fluid simulation, require split or merge of points in where the surface boundary is significantly deformed, because actual “physical” surface points are different from the initial “numerical” simulation points, as shown in Fig. 1(c). In contrast in the particle simulation, only the points called “particles” can perform these simulations, it serves as an ideal numerical solution tool for large deformation and crack propagation in solid analysis, and for complex surface flows where splashes (repeated water splitting and merging) are generated. Further advantage of the particle method is that it is easier to create analytical models for complex geometries for which meshes are difficult to define since particles can be placed inside the analysis area. The particle method, on the other hand, has only a short development history, and some undergoing developments which should be overcome remain. The major disadvantages are insufficient evaluation of simulation error and complicated boundary treatment without surface boundary points.
Recent progress on the particle method, however, has improved both the accuracy of the analysis and the computational stability.

Picture
Fig. 2 Image of particle method

This technical column will focus on two representative particle methods, the SPH (Smoothed Particle Hydrodynamics) and the MPS (Moving Particle Semi-implicit method), and explain the similarities between the two methods. After that, we will introduce recently improved features of the particle method in the summary by showing numerical experiments on particle distribution, which is one of the main factors of error. Incidentally, the Distinct/Discrete Element (DEM) method is a particle-based numerical analysis method used to analyze granular materials or multiple rigid blocks. The DEM approximates the interaction force between particles by equivalent springs and dashpots based on empirical rules or physical laws. It is different from the our main topic ‘particle method’ in the sense which the DEM has no partial differential equation as the governing equations.

The SPH was first proposed in 1977 by Lucy [1] and Gingold et al. [2] as a simulation method for astrophysics (e.g., the collision of celestial bodies). The SPH method was developed for compressible fluids [3] in the early 1990s, for incompressible fluids [4] in the late 1990s as a simple extension of compressible fluid solver, and solids after 1990 by Libersky et al. [5] As its basic concept, the SPH method uses a weight function called a "smooth function" to approximate functions. This function is defined for each particle. By directly differentiating this approximate function, we can derive approximate models of the gradient and Laplacian and use them to solve the differential equations approximately.

On the other hand, the MPS method [6,7] proposed by Koshizuka et al. is a particle method similar to the SPH method. However, the derivation process of the gradient and Laplacian and its concept are slightly different. First, the MPS method, unlike the SPH method, started as a method for analyzing incompressible fluids. The MPS is the first method to introduce the semi-implicit scheme with projection method (explicit time integration for velocity and implicit time integration for pressure) into the particle method as a “truly” incompressible flow solver. The MPS method later developed into a fully explicit method by adopting the solution scheme for compressible fluid as in the early SPH method. The approximation of the spatial derivative in the MPS method can be derived as a weighted average of the interactions between particles based on the Taylor expansion of the function (details to be explained in the next issue). By using this approximation, the differential equation can be solved approximately like the SPH method.

As explained above, we see the reversed development in each method: from compressible fluid to incompressible fluid in the SPH method, and from incompressible fluid to compressible fluid in the MPS method in terms of the time integration method and the handling in the incompressibility of fluid. However, now there is no significant difference, including the time integration method. The main difference between the two is spatial discretization, i.e., the approximation method of spatial differentiation, as shown below. The primary difference between the two lies in spatial discretization, or approximation of the spatial derivative. (To be continued to the next column.)

Reference:
[1] L. B. Lucy: A numerical approach to the testing of the fission hypothesis, Astronom. J., Vol. 82, pp. 1013–1024, 1977.
[2] R. A. Gingold and J. J. Monaghan: Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Monthly Not. Roy. Astronom. Soc., Vol. 181(3), pp. 375–389, 1977.
[3] J. J. Monaghan: Simulating free surface flows with SPH, J. Comput. Phys., Vol. 110, pp. 399–406, 1994.
[4] S. J. Cummins and M. Rudman: An SPH projection method, J. Comput. Phys., Vol. 152, pp. 584–607, 1999.
[5] L. D. Libersky and A. Petschek: Smooth particle hydrodynamics with strength of materials, in Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, Springer, pp. 248–257, 1991.
[6] S. Koshizuka and Y. Oka: Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear Sci. Eng., Vol. 123, pp. 421-434, 1996.
[7] 越塚誠一:計算力学レクチャーシリーズ5 粒子法, 日本計算工学会編, 丸善, 2005.
Growing the particle method, and its present state
1. Present State of the Particle Method
2. Kernel Approximation and Kernel Function Conditions in the SPH Method (Preparation for Spatial Discretization)
Back to Technical Columns INDEX

 About the author

画像
Kyushu University, Department of Civil Engineering
Mitsuteru Asai
​2003, Ph.D.  (Tohoku University, Department of Civil Engineering.)
2003-2005, Post-Doctoral Researcher (The Ohio State University)
2005-2007, Assistant Professor (Ritsumeikan University)
2007-, Associate Professor (Kyushu University)
(Sitemap)
​Home
Case Examples
 - Particleworks Case Examples
 - Users Interview
Features
 - What is MPS?
 - Simulation Flow
 - Pre- and Post-Processing
 - Physics
 - Multiphysics Solution
 - GPU High Performance Computing
 - Visualization Option
Particleworks for Ansys
News
Technical
 - Seminar, Event
 - Particle method, MPS method
 - Technical Column
 - References
 - Papers, Lectures
 - Particle Method Glossary
Contact
 - Developer, Partners
 - Contact Us
Privacy Policy
Terms of Use
GDPR PRIVACY POLICY
(Related Sites)
Prometech Software Site
Granuleworks Site
Prometech Simulation
​Conference Site
GDEP Solutions Site
Contact Us
[Developer, Main Domestic / Global Dealer​]
  Prometech Software, Inc.
Prometech Software, Inc.
​URL: www.prometech.co.jp
​
E-mail: web@prometech.co.jp
(Sitemap)
Home
事例
 - 解析事例
Learning
 - 粒子法・MPS法
​ - 技術コラム
 - 粒子法用語集
 - 参考文献・ウェブサイト
 - 論文・講演
お問い合わせ・ご相談
 - 導入の流れとライセンス形態
 - Particleworks / Granuleworks
   プリインストールGPU搭載
   ワークステーション
 - 開発元・パートナー
 - お問い合わせ
プライバシーポリシー
利用規約
GDPR プライバシーポリシー
(Related Sites)
Prometech Software サイト
​Granuleworksサイト
​Prometech Simulation
Conference サイト
Particleworks Europe サイト
プロメテックCGリサーチ サイト
GDEP Solutions サイト
-  動作確認済み GPU搭載ワークステーション
HPC WORLD サイト
お問い合わせフォーム
[開発元・国内、海外総販売店]
  プロメテック・ソフトウェア株式会社
Prometech Software, Inc.
URL: www.prometech.co.jp
E-mail: web@prometech.co.jp

ⓒPrometech Software, Inc.
  • Home
  • Home
  • Case Examples
    • Particleworks解析事例
    • Particleworks Case Examples
    • User Interview
    • World-Wide User Case Studies
  • Features
    • What is MPS?
    • Simulation Flow
    • Pre- and Post-Processing
    • Physics
    • Multiphysics Solution
    • GPU High Performance Computing
    • Operation environment
  • Particleworks for Ansys
  • News
  • Seminar, Event
  • Technical
    • 粒子法・MPS法
    • 技術コラム >
      • DX時代の製品開発プロセスとCAEの重要性 >
        • 第1回 序 略歴とコラム紹介
        • 第2回 DXとデジタルエンジニアリング
        • 第3回 製品開発プロセスの目指す姿
        • 第4回 DX時代のCAE
        • 第5回 評価CAEの概要と課題
        • 第6回 評価CAEの課題解決手法
        • 第7回 企画CAEの概要と課題
        • 第8回 企画CAEの運用と応用
        • 第9回 設計CAEの概要と課題
        • 第10回 設計CAEの課題解決の進め方
        • 第11回 開発プロセス運用の仕組み作り
        • 第12回 まとめと変革の時代に求められるエンジニア像
      • 粒子法のいま、そして未来へ >
        • 第1回 粒子法のいま
        • 第2回 SPH法におけるカーネル近似とカーネル関数の条件
        • 第3回 SPH法における空間離散化
      • 粒子法の非圧縮条件とは
      • 粒子法入門 >
        • 第1回 粒子法って何?
        • 第2回 粒子法は、他の方法とどう違うか
        • 第3回 粒子法の大きさと質量について
        • ​第4回 「粒子の動かし方」と「加速度の求め方」について
        • ​第5回 計算時間を短縮する方法について
    • Technical Column >
      • Growing the particle method, and its present state >
        • 1. Present State of the Particle Method
        • 2. Kernel Approximation and Kernel Function Conditions in the SPH Method (Preparation for Spatial Discretization)
      • Incompressibility of the particle method
      • Introduction to the particle method >
        • 1. What is a particle method?
        • 2. In what ways is the particle method different from other methods?
        • 3. Mass and volume of particles
        • 4. How to move particles and how to calculate accelerations of particles
        • 5. How to shorten the simulation time
    • 粒子法用語集
    • Particle Method Glossary
    • 参考文献・ウェブサイト
    • Reference Book/URL
    • 論文・講演
  • Contact
    • 導入の流れとライセンス形態
    • Particleworks / GranuleworksプリインストールGPU搭載ワークステーション
    • 開発元・パートナー
    • Developers, Partners
    • お問い合わせ
    • Contact Us