流体解析ソフトウェア Particleworks
  • Home
  • Home
  • Case Examples
    • Particleworks解析事例
    • Particleworks Case Examples
    • User Interview
    • World-Wide User Case Studies
  • Features
    • What is MPS?
    • Simulation Flow
    • Pre- and Post-Processing
    • Physics
    • Multiphysics Solution
    • GPU High Performance Computing
    • Operation environment
  • Particleworks for Ansys
  • News
  • Seminar, Event
  • Technical
    • 粒子法・MPS法
    • 技術コラム >
      • DX時代の製品開発プロセスとCAEの重要性 >
        • 第1回 序 略歴とコラム紹介
        • 第2回 DXとデジタルエンジニアリング
        • 第3回 製品開発プロセスの目指す姿
        • 第4回 DX時代のCAE
        • 第5回 評価CAEの概要と課題
        • 第6回 評価CAEの課題解決手法
        • 第7回 企画CAEの概要と課題
        • 第8回 企画CAEの運用と応用
        • 第9回 設計CAEの概要と課題
        • 第10回 設計CAEの課題解決の進め方
        • 第11回 開発プロセス運用の仕組み作り
        • 第12回 まとめと変革の時代に求められるエンジニア像
      • 粒子法のいま、そして未来へ >
        • 第1回 粒子法のいま
        • 第2回 SPH法におけるカーネル近似とカーネル関数の条件
        • 第3回 SPH法における空間離散化
      • 粒子法の非圧縮条件とは
      • 粒子法入門 >
        • 第1回 粒子法って何?
        • 第2回 粒子法は、他の方法とどう違うか
        • 第3回 粒子法の大きさと質量について
        • ​第4回 「粒子の動かし方」と「加速度の求め方」について
        • ​第5回 計算時間を短縮する方法について
    • Technical Column >
      • Growing the particle method, and its present state >
        • 1. Present State of the Particle Method
        • 2. Kernel Approximation and Kernel Function Conditions in the SPH Method (Preparation for Spatial Discretization)
      • Incompressibility of the particle method
      • Introduction to the particle method >
        • 1. What is a particle method?
        • 2. In what ways is the particle method different from other methods?
        • 3. Mass and volume of particles
        • 4. How to move particles and how to calculate accelerations of particles
        • 5. How to shorten the simulation time
    • 粒子法用語集
    • Particle Method Glossary
    • 参考文献・ウェブサイト
    • Reference Book/URL
    • 論文・講演
  • Contact
    • 導入の流れとライセンス形態
    • Particleworks / GranuleworksプリインストールGPU搭載ワークステーション
    • 開発元・パートナー
    • Developers, Partners
    • お問い合わせ
    • Contact Us

Incompressibility of the particle method

In the MPS (Moving Particle Semi-implicit) method, one of the particle methods, incompressible fluids are solved as "constant density". On the other hand, "velocity divergence zero" is used in the grid methods such as the Finite Volume Method. This difference is a typical characteristic of the MPS method, which is explained in this article.

 

When Koshizuka started to study particle methods in 1993, SPH (Smoothed Particle Hydrodynamics) had already been proposed as a particle method. SPH solves compressible fluids using an explicit algorithm, though most of the engineering problems are those of incompressible fluids which have been solved by the grid methods using a semi-implicit algorithm. Koshizuka sought a particle method that can solve incompressible fluids using a semi-implicit algorithm and finally reached the MPS method. But there is a difference from the existing grid methods and it is the essential idea of the MPS method.

 

Fundamental three physical laws of conservation are for mass, momentum, and energy. The conservation law of energy can be derived from the other two conservation laws of mass and momentum, so that the solution is obtained by solving two conservation laws. In fluid dynamics, the conservation law of mass called "continuity equation" and the conservation law of momentum called "Navier-Stokes equations" are solved simultaneously. This way is taken in the particle methods as well. Incompressibility is related to the conservation law of mass, "continuity equation".

 

The continuity equation of compressible fluids is

$$ \frac{D \rho}{D t}+\rho \nabla \cdot \boldsymbol{u}=0 \qquad. $$

In incompressible fluids, the first term of the left-hand side of Equation (1) is zero, and thus the second term is also zero:

$$ \frac{D \rho}{D t}=0 \qquad, $$ $$ \nabla \cdot \boldsymbol{u}=0 \qquad. $$

In addition, by integrating Equation (2), the following equation representing the density being constant in time is obtained:

$$ \rho=\it{const} \qquad. $$

("\(\it{const}\)" in the right-hand side of Equation (3) means constant.)

 

Equation (4) means "density being constant", which requires that the density should be calculated in each time step and be constant. This is the constraint condition used in the MPS method (Koshizuka and Oka, 1996). On the other hand, Equation (3), "velocity divergence being zero", is used in the grid method. This condition can be employed in particle methods in place of Equation (4). Which is more essential as the incompressibility? Are they equivalent to each other (Figure 1)?

Picture
Figure 1 What incompressibility condition is essential ?

First, please consider the difference between Equations (4) and (3). The basic law is the continuity equation. This requires that the mass should be constant which means that Equation (4) is more essential. By differentiating Equation (4), we obtain Equation (2) representing density change in time is zero, and then Equation (3), velocity divergence being constant, is deduced by using Equation (1).

 

As an analogy of money savings, the deposit can be checked by confirming the amount of money, which is the way using Equation (4). Checking the balance between income and payment is like using Equation (3). If the calculation is accurate, two ways are equivalent. However, if there are possibilities of errors, checking the amount of money is direct and essential.

Picture
Figure 2 Ball motion on a curved surface

The next analogy is a rolling ball on a curved surface as shown in Figure 2(a). The direct constraint condition is that the ball should be on the curved surface, which corresponds to Equation (4) in the fluid dynamics. Differentiating the constraint condition in time, we obtain the condition that the ball velocity \(\boldsymbol{v}\) should be parallel to the curved surface (Figure 2(b)). This corresponds to Equation (3). When the motion of the ball during a small period \(\Delta t\) is considered, the movement is \(\boldsymbol{v} \times \Delta t\) and the ball may be a little inside the wall as shown in Figure 2(c). We can say "the constraint condition = differentiation of the time differentiation of the constraint condition" instantaneously but "the constraint condition ≠ differentiation of the time differentiation of the constraint condition" in the discretized calculation because of errors. From this consideration, we can say that Figure 2(a) is more essential than Figure 2(b). In the particle method, imposing Equation (3) as the incompressibility condition makes the fluid density gradually change due to the errors. The change is accumulated when time proceeds. Therefore, Equation (4) is essential, and Equation (3) is derivative as the incompressibility condition.

 

In SPH, there is a variation method employing "density being constant" as the incompressibility condition (Shao and Lo, 2003). This variation method has imported the concept of the MPS method and is called ISPH (Incompressible SPH). This is written in the paper of Shao and Lo (2003).

 

Next, which is superior, "density being constant" or "velocity divergence being constant"? The author thinks that "density being constant" is superior to "velocity divergence being constant" from the viewpoint of the robustness of the particle methods. In detail, there are advantages and disadvantages. Advantages of "density being constant" are that (1) the density error is not accumulated, (2) the particle distribution is kept uniform, and (3) the free-surface boundary condition is simple. A disadvantage is that the pressure distribution is likely to be oscillatory. The advantage and disadvantages of "velocity divergence being constant" are opposite. Then, an idea to mix Equations (2), (3), and (4) has been proposed (Kondo and Koshizuka, 2008; Tanaka and Masunaga, 2010). In keeping the advantages of "density being constant", the disadvantage of the pressure oscillation is improved.

References
S. Koshizuka and Y. Oka, "Moving-Particle Semi-implicit Method for Fragmentation of Incompressible Fluid," Nucl. Sci. Eng. 123, 421-434 (1996).
S. Shao and E. Y. M. Lo, "Incompressible SPH Method for Simulating Newtonian and non-Newtonian Flows with a Free Surface," Adv. Water Resources 26, 787-800 (2003).
M. Kondo and S. Koshizuka, "Suppressing the Numerical Oscillation in Moving Particle Semi-implicit Method," Trans. JSCES, Paper No.20080015 (2008). (in Japanese)
M. Tanaka and T. Masunaga, "Stabilization and Smoothing of Pressure in MPS Method by Quasi-Compressibility," J. Comput. Phys. 229, 4279-4290 (2010).
  • Incompressibility of the particle method
Back to Technical Columns INDEX

 About the author

画像
Prof. Seiichi Koshizuka
Professor, Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo
Founder and Outside Director, Prometech Software
Inventor of the particle method (MPS method)
​<Author Profile>
2004
Professor, Department of Quantum Engineering and Systems Science, Graduate School of Engineering, The University of Tokyo
2005
External Board Member, Prometech Software, Inc.
2008
Professor, Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo
(Sitemap)
​Home
Case Examples
 - Particleworks Case Examples
 - Users Interview
Features
 - What is MPS?
 - Simulation Flow
 - Pre- and Post-Processing
 - Physics
 - Multiphysics Solution
 - GPU High Performance Computing
 - Visualization Option
Particleworks for Ansys
News
Technical
 - Seminar, Event
 - Particle method, MPS method
 - Technical Column
 - References
 - Papers, Lectures
 - Particle Method Glossary
Contact
 - Developer, Partners
 - Contact Us
Privacy Policy
Terms of Use
GDPR PRIVACY POLICY
(Related Sites)
Prometech Software Site
Granuleworks Site
Prometech Simulation
​Conference Site
GDEP Solutions Site
Contact Us
[Developer, Main Domestic / Global Dealer​]
  Prometech Software, Inc.
Prometech Software, Inc.
​URL: www.prometech.co.jp
​
E-mail: web@prometech.co.jp
(Sitemap)
Home
事例
 - 解析事例
Learning
 - 粒子法・MPS法
​ - 技術コラム
 - 粒子法用語集
 - 参考文献・ウェブサイト
 - 論文・講演
お問い合わせ・ご相談
 - 導入の流れとライセンス形態
 - Particleworks / Granuleworks
   プリインストールGPU搭載
   ワークステーション
 - 開発元・パートナー
 - お問い合わせ
プライバシーポリシー
利用規約
GDPR プライバシーポリシー
(Related Sites)
Prometech Software サイト
​Granuleworksサイト
​Prometech Simulation
Conference サイト
Particleworks Europe サイト
プロメテックCGリサーチ サイト
GDEP Solutions サイト
-  動作確認済み GPU搭載ワークステーション
HPC WORLD サイト
お問い合わせフォーム
[開発元・国内、海外総販売店]
  プロメテック・ソフトウェア株式会社
Prometech Software, Inc.
URL: www.prometech.co.jp
E-mail: web@prometech.co.jp

ⓒPrometech Software, Inc.
  • Home
  • Home
  • Case Examples
    • Particleworks解析事例
    • Particleworks Case Examples
    • User Interview
    • World-Wide User Case Studies
  • Features
    • What is MPS?
    • Simulation Flow
    • Pre- and Post-Processing
    • Physics
    • Multiphysics Solution
    • GPU High Performance Computing
    • Operation environment
  • Particleworks for Ansys
  • News
  • Seminar, Event
  • Technical
    • 粒子法・MPS法
    • 技術コラム >
      • DX時代の製品開発プロセスとCAEの重要性 >
        • 第1回 序 略歴とコラム紹介
        • 第2回 DXとデジタルエンジニアリング
        • 第3回 製品開発プロセスの目指す姿
        • 第4回 DX時代のCAE
        • 第5回 評価CAEの概要と課題
        • 第6回 評価CAEの課題解決手法
        • 第7回 企画CAEの概要と課題
        • 第8回 企画CAEの運用と応用
        • 第9回 設計CAEの概要と課題
        • 第10回 設計CAEの課題解決の進め方
        • 第11回 開発プロセス運用の仕組み作り
        • 第12回 まとめと変革の時代に求められるエンジニア像
      • 粒子法のいま、そして未来へ >
        • 第1回 粒子法のいま
        • 第2回 SPH法におけるカーネル近似とカーネル関数の条件
        • 第3回 SPH法における空間離散化
      • 粒子法の非圧縮条件とは
      • 粒子法入門 >
        • 第1回 粒子法って何?
        • 第2回 粒子法は、他の方法とどう違うか
        • 第3回 粒子法の大きさと質量について
        • ​第4回 「粒子の動かし方」と「加速度の求め方」について
        • ​第5回 計算時間を短縮する方法について
    • Technical Column >
      • Growing the particle method, and its present state >
        • 1. Present State of the Particle Method
        • 2. Kernel Approximation and Kernel Function Conditions in the SPH Method (Preparation for Spatial Discretization)
      • Incompressibility of the particle method
      • Introduction to the particle method >
        • 1. What is a particle method?
        • 2. In what ways is the particle method different from other methods?
        • 3. Mass and volume of particles
        • 4. How to move particles and how to calculate accelerations of particles
        • 5. How to shorten the simulation time
    • 粒子法用語集
    • Particle Method Glossary
    • 参考文献・ウェブサイト
    • Reference Book/URL
    • 論文・講演
  • Contact
    • 導入の流れとライセンス形態
    • Particleworks / GranuleworksプリインストールGPU搭載ワークステーション
    • 開発元・パートナー
    • Developers, Partners
    • お問い合わせ
    • Contact Us