Physics
Boundary Conditions●Wall Boundaries
Walls can be either particles or polygons. Particle walls allowing users to calculate internal temperature distributions, while polygon walls generally create a smaller memory footprint and allow for faster calculation. Movements can be set for both types of walls. ●Inflow Boundaries Inflow boundaries allows for the generation of fluid or powder over time. The flow can be specified by its velocity or flow rate (volume). Inflows are movable. ●Moving/Periodic Boundaries The mesh-free method allows the simulation region to be moved. This saves computational resources when simulating a large region, such as a waterway driving test. Periodic boundaries are also supported. |
Pressure●Implicit / Explicit Methods
The explicit method speeds up calculation by giving a suitable speed of sound. ●Suppression of Pressure Oscillation Spatial pressure oscillation can be suppressed using this function, resulting in higher accuracy . ●Negative Pressure Model Unlike other particle-based methods, Particleworks can handle negative pressure with ease. Define the outside pressure or atmospheric pressure. |
Viscosity●Newtonian / Non-Newtonian Fluids
Particleworks can simulate non-Newtonian fluids ‒ such as power-law or Bingham fluid ‒ as well as Newtonian fluids. For more detailed control over viscosity, you can specify custom functions or data tables. ●High-Viscosity Fluids When simulating high-viscosity fluids, the explicit method tends to give a smaller time step, resulting in a longer calculation. In contrast, Particleworks’ implicit method maintains a constant time step, making it an ideal solution for such simulations. |
Surface TensionParticleworks offers two models: The CSF model calculates surface tension from the geometric shape of the object, whereas the Potential model uses interfacial energy between objects.
One of the advantages of the Potential model is the contact angle. You can set contact angles between two different states of matter, such as wall-fluid and fluid-fluid. By specifying the magnitude of the attractive force, multiple non-mixable fluids can be simulated, such as oil and water. |